# **Original Article**

# Quality Assessment of Edible Fish Species at Flood Basin of Omambala River, South East Nigeria

Uwakwe Simon Onoja<sup>1</sup>, Nwachukwu Romanus Ekere<sup>\*2</sup>, Joy Uzoamaka Ezugwu<sup>1</sup>, Remigius Ibe Onoja<sup>3</sup> Received: 27.03.2018 Accepted: 05.05.2018

# ABSTRACT

**Background:** Food poisoning resulting from microbial and heavy metals pollution is commonplace. These contaminants do not only reduce the nutritional value of the food but are in many cases toxic. In this study, the proximate composition, bacterial quality and some heavy metals (Cd, Pb, Hg) concentration in three common fish species (*Claria gariepinus, Heterobrachus bidorsalis and Channa obscura*) found in flood basin of Omambala River in Anambra, Nigeria were evaluated from 2016 to 2017.

**Methods:** Wet digestion was used for the samples preparation and AOAC methods were adopted for the proximate analysis. Standard aerobic pour-platetechniques were used for bacterial enumeration while heavy metal concentrations were determinedusing Atomic Absorption Spectrophotometer (AAS).

**Results:** All the fish species had high protein, moisture, lipid, ash and minerals contents. Mean bacteria count of  $3.36 \times 10^6$  cfu/g was observed in *C. gariepinus* while *C. obscura* had mean bacterial count of  $3.23 \times 10^6$  cfu/g and *H. bidorsalis* had mean bacterial count of  $3.40 \times 10^6$  cfu/g. *C. gariepinus* had a cadmium and lead concentration of  $0.012 \pm 0.012$  mg/kg, and  $0.0043 \pm 0.0012$  mg/kg respectively while *C. obscura* had  $0.010 \pm 0.005$  mg/kg and  $0.037 \pm 0.013$  mg/kg of cadmium and lead. *H. bidorsalis* had  $0.011 \pm 0.002$  mg/kg, and  $0.048 \pm 0.005$  mg/kg of cadmium and lead respectively.

**Conclusion:** All the fish species are good sources of nutrient. The microbial and heavy metals concentrations were within the acceptable international limits for heavy metals in foods. However, the presence of these toxicants in the samples is a source of concern in relation to the health of the consumers.

Keywords: Bacteria, Fish, Flood Basin, Heavy Metal, Nutrients, Proximate.

# IJT 2018 (4): 19-23

# **INTRODUCTION**

One major public health problem in developing countries is malnutrition. Fish makes a very significant contribution to nutrition because it is a source of vital nutrients to many people worldwide. Fish is a highly proteinous food consumed by many people especially in the developing countries due to their availability and palatability [1, 2]. Fish is consumed more than meat in Nigeria because it is cheaper and relatively abundant [3]. The increased awareness of the diseases of modern civilization notably, non-communicable diseases make fish the better choice as it contains long-chain polyunsaturated omega-3 fatty acid. This compound is known to improve lipid profile, reduce cholesterol levels, the risk of coronary heart diseases, stroke and preterm diseases [4-6]. Fish has hypolipidemic/or antiatherogenic effects and is also a source of vitamins and minerals [6]. It can also decrease the risk of prostate cancer, reduce occurrence of renalcell carcinoma in women and reduce risk of dementia and Alzheimer disease [5]. Fish is consumed fresh or smoked and form by all socio-economic, sociocultural, age and religious groups in Nigeria [7, 8]. In many areas, fishermen hunt fish in natural water bodies or in artificial ponds as a means of income [9].

Regular fish intake is known as a potential source of human exposure to toxic chemicals [4, 6]. Some heavy metals found in fish samples toxic and may enter water bodies from natural and anthropogenic

<sup>1.</sup> Department of Home Science, Nutrition, and Dietetics, University of Nigeria, Nsukka, Nigeria.

<sup>2.</sup> Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria.

<sup>3.</sup> Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nigeria.

<sup>\*</sup> Corresponding Author: E-mail: nwachukwuekere64@gmail.com

sources [10]. Fish can also be polluted by microbes. These microorganisms especially bacteria enter water through animal excreta, agricultural runoff, industrial and domestic wastes [11-13].

In Nigeria, many fish species are found in flood basin where they are hunted for food. The nutrient composition of these species may be different when compared to fish bred in captivity. Scantv information exists on the nutritional and contaminants status of fish species commonly found in flood basins in developing countries like Nigeria [14]. Hence, the nutritional status and the risk associated with eating such fish makes it imperative to evaluate the proximate composition, microbial quality and heavy metals content of the fish species.

The objective of this study was to assess the proximate composition, bacterial and some heavy metal contents of predominantly consumed fish species (*C. gariepinus, H. bidorsalisand C. obscura*), found in Omambala River flood basin in Anambra, South eastern Nigeria.

# **MATERIALS AND METHODS**

### Study Area

The study was conducted from 2016 to 2017 in Omambala River in Anambra State which flows into the River Niger and is found in Anambra State, Nigeria. The river is the most important feeder of the River Niger South of Lokoja. Anambra is a southeastern state of Nigeria and its name was from Oma Mbala, the native name of the Anambra River. The location of Anambra is in the coordinates  $6^{\circ}2^{1}N$  $7^{\circ}E$  with area of 4844km<sup>2</sup>.

# Sample Collection

Thirty-threefresh fish samples made up of eleven samples each of different species (*C. gariepinus, H. bidorsalis,* and *C. obscura*) were purchased from fishermen at Omambala river bank immediately they were caught from the river basin. The samples were collected from flood basin using equipment like baited foul-hook, lift net, flattened hook, gill net, traps, spring-loaded set lines, cages of mesh sizes of 50mm, 75mm, and 100mm each kept inside open container containing water.

The identities of the samples were authenticated at the Department of Zoology and Environmental Biology, University of Nigeria, Nsukka.

# Sample Preparation

The samples thoroughly washed with deionized water to remove any adhering contaminants, followed by draining under folds of filter paper. They

were dissected with a stainless knife to remove the gut and bones. The muscles were homogenized with an electric food blender and stored at-20°C prior to analysis [8].

# **Proximate** Analysis

The determinations of moisture, ash, crude protein, fat and carbohydrate content were done according to the method of AOAC [15]. The percentage of protein content was calculated according to the following equation:

% Nitrogen= $\underline{0.014 \times VD \times N \times 100 \times TV}$ 

Weight of sample × AD

% Protein =  $N \times F$ .

where, VD = volume of digest; N = normality of acid; TV = titre value; AD is the aliquot of digest and F= conversion factor for nitrogen to protein (6.25).Crude fat got gravimetrically from complete extraction from 2.0 gr of each sample in a Soxhlet apparatus using petroleum ether as solvent. Carbohydrate content was calculated by based on difference calculation:

Carbohydrate = 100% - (% moisture + % ash + % crude protein + % fat).

# Microbial Examination

The microbial (bacterial) examinations of the samples were done by standard plate count technique. A mass of 1.0 gr of each of the samples was homogenized in 9ml saline to make up the volume of the homogenate to 10ml suspension. The suspension was further diluted in 10 folds and 0.1ml of the dilution evenly spread on MacConkey and *Samonella shigella* agar plates. The plates were incubated at 37°C for 24h. The growth was observed and colonies were counted. Microscopic examination was carried out to identify the different bacteria present.

# Heavy Metals Determinations

The edible portions of the fish samples (muscles and gills) were removed and homogenized. Each sample (2.0 g) was subjected to wet digestion using 14 mlof nitric acid - perchloric acid (HNO<sub>3</sub>:HCLO<sub>4</sub>) mixture in 5:2 ratio overnight at room temperature. The digest was, allowed to cool to room temperature, filtered with glass wool and made up to 50ml with deionized water. The filtrates were analyzed in triplicate, using Buck 2000 Atomic Absorption Spectrophotometer (AAS). Cd and Pb were analyzed using FAAS while Hg was assayed with cold vapour technique.

#### Statistical Analysis

Data obtained were subjected to analysis using SPSS statistical package version 15 for windows. Significant differences were accepted at P < 0.05 probability level.

#### **Quality** Assurance

The apparatuses used were washed thoroughly, rinsed and soaked overnight in 5% v/v HNO<sub>3</sub>. Blanks were taken through same digestion procedure. Limit of detection (LOD) and limit of quantitation (LOQ) were estimated using the method [16].Recovery Analysis was carried using six randomly selected samples (two each of the species) to determine equipment working conditions and method accuracy. The fish samples were spiked with three different known quantities of the pure metals salts, Calibrations were done with 1000mg/L stock solutions of the respective salts supplied by BDH, UK. The stock solutions were serially diluted to get the required concentration levels for calibrations.  $R^2$  values ranging from 94 to 99% were obtained. The LOD and LOQ of 0.003 and 0.009 for Cd and 0.005 and 0.016 for Pb were respectively obtained. Recoveries between 97% and 104% were obtained from the calculations.

There is no conflict of interest in this work and all the authors contributed equally in all aspects of it. Human or animal study/usage was not part of the work.

#### RESULTS

The results of the analysis conducted on the samples were presented in this section. These include proximate composition, microbial study and heavy metals contamination. The result of proximate compositional analysis of the fish species showed in Table 1.Table 2 and 3 present the microbial content while Table 4 is the metal toxicants in the samples.

Table 1.Means±/standard deviations of the proximate composition of the fish species (g/100 g wet weight).

| Fish species  | Fat         | Ash             | Protein          | Carbohydrate | Moisture   |
|---------------|-------------|-----------------|------------------|--------------|------------|
| C. gariepinus | 12.1±0.14   | 3.38±0.46       | 22.14±0.12       | 5.48±0.13    | 57.22±1.80 |
| C. obscura    | 12.06±0.11. | 4.11±0.13       | $21.82 \pm 0.01$ | 3.80±0.51    | 58.14±0.36 |
| H. bidorsalis | 11.49±0.51  | $3.00 \pm 0.49$ | 21.12±0.45       | 4.01±0.49    | 60.34±0.10 |

*H. bidorsalis* had the highest moisture content (60.34%) while the lowest was found in *C. gariepinus* (57.22%). *C. gariepinus* had the highest protein content value of 22.14% while the lowest value of 21.12% was found in *H. bidorsalis*. *C. obscura* had the highest ash content of 4.11% among the three fish species while *H. bidorsalis* recorded the lowest value of 3.00%.*C. gariepinus* had the highest value of 12.1% while *H. bidorsalis* recorded the lowest value of 11.49%. The carbohydrate content of *C. gariepinus* was the highest and *C. obscura* had the lowest value.

**Table 2.** Total bacteria count TBC  $(x10^6 cfu/g)$  in the<br/>different fish species.

| Fish species  | x10 <sup>6</sup> cfu/gml |  |
|---------------|--------------------------|--|
| C. gariepnus  | 3.36                     |  |
| C. obscura    | 3.23                     |  |
| H. bidorsalis | 3.40                     |  |

*H. bidorsalis* had the highest bacterial count of  $3.40 \times 10^6$  cfu/g while *C. obscura* had the lowest bacterial count of  $3.23 \times 10^6$  cfu/gml. All the fish species had the same total coli form count values of  $2.6 \times 10^6$  cfu/gml.

| Table 3. Isolated | l bacteria | from fish | species | collected |
|-------------------|------------|-----------|---------|-----------|
|-------------------|------------|-----------|---------|-----------|

| from the two. |                   |  |  |
|---------------|-------------------|--|--|
| Fish species  | Bacteria isolated |  |  |
| C. gariepinus | Peadiococcus      |  |  |
|               | Alkaligenase      |  |  |
|               | Peudomonas        |  |  |
| C. obscura    | Micrococcus       |  |  |
|               | Enterobacter      |  |  |
|               | Staphylococcus    |  |  |
| H. bidorsalis | E. coli           |  |  |
|               | Alkaligenese      |  |  |
|               | Staphylococcus    |  |  |

**Table 4.** Heavy metal Analysis concentrations in mg/kg of fish species.

|                     | -                 | -                  |                  |
|---------------------|-------------------|--------------------|------------------|
| <b>Fish species</b> | Cd                | Pb                 | Hg               |
| C. gariepnus        | $0.012 \pm 0.012$ | $0.043 \pm 0.0012$ | $0.012 \pm 0.01$ |
| C. obscura          | $0.010\pm0.005$   | $0.037 \pm 0.013$  | $0.014\pm0.00$   |
| H. bidorsalis       | $0.011\pm0.002$   | $0.048\pm0.005$    | $0.012\pm0.002$  |

*C. gariepnus* had the highest Cd concentration of  $0.012\pm0.012$ mg/kg while *C. obscura* had the lowest value of  $0.010 \pm 0.005$ mg/kg. Pb concentration of *H. bidorsalis*was highest ( $0.048 \pm 0.005$  mg/kg) and the lowest was in *C.obscura*. The highest concentration of Hg was  $0.014 \pm 0.00$ mg in *C. obscura*. C. gariepnus and *H. bidorsalis* had Hg concentrations of

 $0.012\pm0.01$  mg/kg and  $0.012\pm0.002$  mg/kg respectively. The order of heavy metal content in all the fish species is Pb > Cd > Hg

# DISCUSSION

The proximate composition the three fish species indicated that they are nutritious. The moisture levels in two of the species were below the acceptable range (60% to 80%). Low moisture content of fish could be an advantage in fresh fish storage as the microbial spoilage and oxidative degradation is reduced [17]. The observed protein levels of fish species indicated that they belonged to the high-protein (18%-23%) category [18]. High crude protein in fish could be due to feed consumption and conversion efficiency of these fish species [19]. Their protein contents were not significantly different suggesting that they are all under the same health condition [20]. The highest protein content of C. gariepnus may be attributed to its carnivorous nature. The ash content levels of the fishes (3.00%-4.11%) showed that the species are good source of minerals such as calcium, potassium, zinc, iron and magnesium [8]. The fat content in this study which ranged from (11.49%-12.86%) places these fish species under the high-fat content category (>8%) [21, 22]. The high values of carbohydrate obtained in this study were within the permissible limit of 2%-5% [8, 23] and higher than that reported for the wild tilapia [24].

The isolation of bacteria from the fishes is an indication of contamination of the water body where they were caught. *E. coli* is found in gastrointestinal tracts of mammals and reach water with other microorganisms through animal excreta, agricultural runoff, industrial and human wastes [7]. *E. coli* is the cause of diarrhoea, dysentery, hemolytic uremic syndrome, bladder and kidney infection, septicemia, pneumonia and meningitis [11 - 13].

All the heavy metals analyzed in this study were found to be below the National Environmental Standard and Regulation Enforcement Agency (NESREA) [25] and WHO [26] standards. This may be due to less industrial activity within the study area. These metals can bioaccumulate and biomagnify after exposure to low levels for a long period of time [5]. Muscles are reputed to have high metals accumulating potential [27-30] and such have been reported in some fish muscles [31, 32]. In low concentrations, these metals are toxic [33-35]. A fish contaminated with these metals can enter man's food chain and biomagnifications of such heavy metal may be harmful to man's health [8].

# CONCLUSION

All the three fish species in Omambala River flood basin in Anambra State, C. gariepinus, H. bidorsalis and C. obscura are good sources of protein, lipid, ash The study minerals. has also revealed and unacceptable level of bacteria and levels of some heavy metals within their permissible safe levels for human consumption. However, there is need for constant monitoring due to the current climate change which usually results in over flooding of rivers. Safe and efficient disposal of domestic wastes and industrial effluents are recommended to avoid these heavy metals and bacteria from gaining access to the aquatic environment.

# **ACKNOWLEDGEMENTS**

The authors wish to thank our laboratory staff who assisted in sample collection and preparation. They wish to remain anonymous. The authors declare that there is no conflict of interests.

### REFERENCES

- 1. Foran JA, Carpenter DO, Hamilton MC, Knuth BA, Schwager SJ. Risk-based consumption advice for farmed Atlantic and wild Pacific salmon contaminated with dioxins and dioxin-like compounds. Environ Health Perspect 2005; 33:552-6.
- Adeniyi SA, Orjiekwe CL, Ehiagbonare JE, Josiah SJ. Nutritional composition of three different fishes (*Clarias gariepinus, Malapterurus electricus* and *Tilapia guineensis*). Pak J Nutr 2012; 11 (9):793-7.
- AdewumiAA. Fisheries and aquaculture development in Nigeria. Fisheries and aquaculture development in Nigeria: An appraisal. Proceedings of 2010 International Conference for Bio-informatics and Biomed. Tech., China, April 2011
- 4. Burger J. Gochfeld M. Heavy metals in commercial fish in New Jersey. Environ Res. 99:403–12.
- Musaiger AO, D'Souza R. The effects of different methods of cooking on proximate, mineral and heavy metal composition of fish and shrimps consumed in the Arabian Gulf. Arch Latinoam Nutr 2008; 58: 103 -9.
- Bashir FA, Shuhaim-Othman M, Mazlan AG. Evaluation of trace metal levels in tissues of two commercial fish species in Kapar and Mersing coastal waters, Peninsular Malaysia. J Environ Public Health2012; 2012: 352309.
- Adebayo-Tayo BC, Onilude AA, Patrick UG. Mycofloral of smoke-dried fishes sold in Uyo, Eastern Nigeria. World J Agric Sci 2008; 4(3):346-50.
- 8. Ogundiran MA, Adewoye SO, Ayandiran TA, Dahunsi SO. Heavy metal, proximate and microbial profile of some selected commercial marine fish collected from two markets in south western Nigeria. Afr J Biotechnol 2014; 13(10):1147-53.

- 9. Food and Agricultural Organization (FAO). Nutritional Elements of Food and Agricultural Organization. Fish. Rome 2010.
- Nair M, Jayalakshmy KV. Balachandran KK, Joseph T.Bioaccumulation of toxic metals by fish in a semienclosed tropical ecosystem. Environ Forensics2006; 7: 197–206.
- 11. Adams A, Thompson KD. Biotechnology offers revolution to fish health management. Trends Biotechnol 2006; 24:201-5.
- 12. Almedia A, Cunha A, Gomes N, Alves E, Costa L, Faustino M. Phage therapy and photodynamic therapy: Low Environmental impact Approaches to Inactivate Microorganisms in Fish Farming plants. Mar Drugs 2009; 7(3):263-313.
- Altinok I, Capkin E, Kayis S. Development of multiplex PCR assay for simultaneous detection of five bacterial fish pathogens. Vet Microbiol 2008; 131(3-4):332-8.
- 14. Oladipo IC, Bankole SO. Nutritional and microbial quality of fresh and dried *Clarias gariepinus* and *Oreochromis niloticus*. Int J Appl Microbiol Biotechnol 2013; 1:1-6.
- 15. AOAC,Official Methods of Analysis. 17th ed. Gaithersburg, Maryland, USA, AOAC International, 2000.
- 16. Shrivastava A, Gupta VB. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicle Young Scientist 2011; 2(1): 21-5
- 17. Omolara OO, Omotayo OD. Preliminary Studies on the effect of processing methods on the quality of three commonly consumed marine fishes in Nigeria. Biokemistri J 2008; 21: 1-7.
- Adewumi, AA, Adewole, HA, Olaleye VF. Proximate and elemental composition of the fillets of some fish species in Osinmo Reservoir, Nigeria. Agric Biol J N Am 2014; 5(3): 109-17.
- 19. Adewoye SO, Omotosho JS. Nutrient Composition of some freshwater Fishes in Nigeria. BioSci Res Commun 1997; 11(4)333-6.
- 20. Ama-Abasi D, Ogar A. Proximate analysis of snakehead fish, *Parachanna obscura*, (Gunther 1861) of the Cross River, Nigeria. J Fish Aquat Sci 2013; 8: 295-8.
- Ackman, RG. Nutritional composition of fats in seafoods. Progressive Food Nutr Sci 1989; 13:161-241.
- Osibona AO, Kusemiju K, Akande GRProximate composition and fatty acids profile of the African Catfish *Clarias gariepinus*. ActaSATECH 2009; 3(1):85-9
- 23. United State Department of Agriculture,(USDA) Agricultural Research Service, National NutritionData

base for standard reference. Release, 23. Nutrition Laboratory 2010.

- 24. Job BE, Antai EE, Inyang-Etoh AP, Otogo GA, Ezekiel HS. Proximate Composition and Mineral Contents of Cultured and Wild Tilapia (*Oreochromis niloticus*) (Pisces: Cichlidae) (Linnaeus, 1758). Pak J Nutr 2015; 14 (4): 195-200.
- 25. National Environmental Standards and Regulations Enforcement Agency (NESREA)(establishment) act, 2007.
- 26. World Health Organization (WHO), Guideline for Drinking Water Quality. 4th ed, NLM Classification:WA 675, World Health Organization, Geneva, Switzerland. ISBN: 978 924 1548151. 2011.; 307-433
- Erdogrul O, Erbilir F. Heavy metals and trace elements in various fish samples from Sir Dam Lake, Kahramanmaras, Turkey. Environ Monit Assess 2007; 130 373-9.
- 28. Uysal K, Kose E, Bulbul M, Donmez M, Erdogan Y, Koyun M, Omeroglu C, Ozmal FThe comparison of heavy metal accumulation ratios of some fish species in Enne Darne Lake (Kutahya, Turkey). Environ Monit Assess 2009; 157:355-62.
- 29. Bervoets L, Blust R. Metal concentrations in water sediment and gudgeon (*Gobio gobio*) from a pollution gradient: relationship with fish condition factor. Environ Pollut 2003; 126:9-19.
- Dahunsi SO, Oranusi SU, Ishola RODifferential bioaccumulation of heavy metals in selected biomarkers of *Clarias gariepinus* (Burchell, 1822) exposed to chemical additives effluent. J Res Environ Sci Toxicol 2012; 1(5):100-6.
- 31. Kotze PD, Preez HH, Van-Vuren JHJ. Bioaccumulation of copper and Zinc in Oreochromis mossambicus and Clarias gariepinus, from the Olifants River, Mpumalanga, South Africa. Water SA 2006; 25(1) 78 – 84.
- 32. Senthil M.S, Karuppasamy K, Poongodi S, Puranesurin M. Bioaccumulation Pattern of Zinc in Freshwater Fish *Channa punctatus* (Bloch) after chronic exposure. Turk J Fish Aquat Sci 2008; 8:55-9.
- 33. Dural M, Goksu MZI, Ozak AA, Derici BBioaccumulation of some heavy metals in different tissues of *Dicentrachus labrax* L., 1758, *Sparus aurata* L., 1758, and *Mugil cephalus* L., 1758 from the Camlik lagoon of the eastern coast of Mediterranean (Turkey). Environ Monit Assess 2006; 118:66-74.
- 34. Fianko JR, Osae S, Adomako D, Adotey DK, Serfor-Armah YAssessment of heavy metal pollution of the Iture Estuary in the central region of Ghana. Environ Monit Assess 2007; 131:467-73.
- 35. Yilmaz F, Ozodemir N, Demirak A, Tuna ALHeavy metal level in two fish species *Leuscius cephalus* and *Lepomis gibbosus*. Food Chem 2007; 100: 830-5.